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Abstract
The synchronous dynamics and the stationary states of a recurrent attractor
neural network model with competing synapses between symmetric sequence
processing and Hebbian pattern reconstruction are studied in this work allowing
for the presence of a self-interaction for each unit. Phase diagrams of stationary
states are obtained exhibiting phases of retrieval, symmetric and period-two
cyclic states as well as correlated and frozen-in states, in the absence of noise.
The frozen-in states are destabilized by synaptic noise and well-separated
regions of correlated and cyclic states are obtained. Excitatory or inhibitory
self-interactions yield enlarged phases of fixed-point or cyclic behaviour.

PACS numbers: 75.10.Hk, 87.18.Sn, 02.50.−r

1. Introduction

The asymptotic stationary states of large recurrent attractor neural network models trained
with sequences of patterns have been studied for some time [1–10] and there has been a
recent revival of interest in studies near the storage saturation of patterns [11–17]. Besides
network models for asymmetric sequence processing, models with synapses generated by
symmetric sequences competing with pattern reconstruction favoured by Hebbian synapses
have been studied in some of those works [3, 4, 8, 16]. These are models with an underlying
asynchronous dynamics and phase diagrams were obtained which only exhibit fixed-point
solutions, in particular correlated attractors, in accordance with a general expectation for
networks with symmetric interaction matrices far from the storage saturation limit in which
the ratio α = p/N of the number of stored patterns p and the number of neurons N is zero, in the
large-N limit. In contrast, in the case of a synchronous dynamics with symmetric interactions
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the stationary states may be either fixed-points or cycles of period two, in the same limit [18].
Rhythmic activity appears in neurobiological systems [19] and the competition between these
features may yield interesting clues.

The presence of self-interactions of the units, which is consistent with detailed balance
in the synchronous dynamics of a network with a symmetric interaction matrix, has not
been considered so far except in Little’s model which has a simple Hebbian learning rule
[20–25]. The role of self-interactions, which may be either excitatory or inhibitory, is to control
the fraction of spin flips in the dynamics. Excitatory interactions may enhance the retrieval
performance, while inhibitory interactions can give rise to cyclic behaviour. Self-interactions
and their relationship to initial overlaps play a crucial role in Little’s model, leading to frozen-
in cycles of period two among other features, in the absence of noise [21, 22]. In a recent
work, it has been shown that these cycles are destabilized in a slow dynamical process either by
synaptic or stochastic noise due to a macroscopic number of stored patterns [25]. This raises
concern about the stability of cycles of period two in general in the synchronous dynamics of
networks with symmetric interactions for the specific interesting case of symmetric sequence
processing competing with Hebbian synapses.

There has been great interest in models with symmetric sequential interactions due to
the presence of correlated fixed-point attractors [4, 8, 16, 29], which are stationary states
that emerge from a balanced competition between sequential and Hebbian synapses. They
indicate a selectivity in response to a set of previously learned uncorrelated patterns by means
of decreasing correlation coefficients for the attractors with increasingly distant patterns from a
stimulus. Correlated attractors have been used to explain the results of experimental recordings
of a visual-memory task in the inferotemporal cortex of monkeys [26–29]. In the case of a
synchronous dynamics, the correlated fixed-point states might be destabilized by the presence
of a macroscopic number of flipping spins giving rise to oscillatory overlaps.

The asymptotic states of a feed-forward layered neural network model for competing
symmetric sequence processing with Hebbian synapses have been discussed in a recent work
[30]. The model is described by a synchronous dynamics and it is characterized by asymmetric
synaptic connections between units in two consecutive layers and there are neither lateral
synapses between units in the same layer nor self-interactions of the units. Phase diagrams of
stationary states were obtained exhibiting retrieval states, correlated states, symmetric mixture
states and stable cycles of period two, for increasingly larger fractions of sequential synapses.
All of these states are robust either to synaptic noise or to stochastic noise due to a macroscopic
number of stored patterns.

The purpose of the present paper is to study the synchronous dynamics and the asymptotic
states of a recurrent network model of binary units and patterns for competing interaction
between symmetric sequence processing and Hebbian synapses, in order to investigate the
presence and stability of cycles of period two and of other states which could be competing
with the retrieval and with the correlated states. We make use of a generating functional
approach (GFA) for the dynamics of disordered systems [11, 31], which is an exact procedure
in the mean-field limit, and we use an adaptation of the numerical simulation procedure of
Eissfeller and Opper (EO) [32] based on the GFA in order to implement the calculation of
single-site averages. We also resort to a recently introduced alternative approach [25].

The outline of the paper is as follows. We introduce the model in section 2 and present a
brief summary of the well-known GFA and the EO procedure in section 3 as well as explicit
dynamic recursion relations for the overlaps. We present our results for the phase diagrams in
section 4 and conclude with a summary and further discussion in section 5.
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2. The model

We consider a network of N Ising neurons in a microscopic state σt = (σ t
1, . . . , σ

t
N ), at a

discrete time step t in which each σ t
i = ±1 represents the state of an active or inactive neuron,

respectively. The states of all neurons are updated simultaneously at each time step according
to the alignment of each spin with its local field

ht
i =

∑
j

Jij σ
t
j + θ t

i , (1)

following a microscopic stochastic single spin-flip dynamics with transition probability

w
(
σ t+1

i

∣∣ht
i

) = 1
2

[
1 + σ t+1

i tanh
(
βht

i

)]
(2)

ruled by the synaptic noise control parameter β = T −1. Here, Jij is the synaptic coupling
between neurons i and j and θ t

i is an external stimulus. The dynamics is a deterministic one
when T = 0 and fully random when T = ∞. In the former case, σ t+1

i = sgn
(
ht

i

)
.

A macroscopic set ξμ = (
ξ

μ

1 , . . . , ξ
μ

N

)
, μ = 1, . . . , p of p = αN independent and

identically distributed quenched random patterns, each ξ
μ

i = ±1 with probability 1
2 , is

embedded in the network by means of the synaptic coupling Jij between distinct neurons
i and j . One may think of j and i as pre- and post-synaptic neurons, respectively, the activities
of which give rise to that coupling. We assume, as usual, that a finite number c of patterns
are condensed so that the overlaps with the state of the network, defined below, are finite and
responsible for the signal in the local field. The remaining macroscopic number of p − c

non-condensed patterns will give rise to the noise in the local field. To be specific, we assume
that the condensed patterns are cyclic so that ξc+1 = ξ1.

The non-condensed patterns need not be embedded in the network by the same learning
rule as that for the condensed patterns. Indeed, one may consider that those patterns have been
learned in a previous stage, in accordance with an argument that has been used before [4]. We
make use of this freedom in order to simplify the calculations by assuming a Hebbian rule for
the non-condensed patterns. Guided by the work on the layered feed-forward network [30],
we expect qualitatively the same results as those obtained here for the same learning rule for
condensed and non-condensed patterns. Thus, altogether, we take a synaptic coupling of the
form

Jij = ν

N

c∑
μ=1

ξ
μ

i ξ
μ

j +
1 − ν

N

c∑
μ=1

(
ξ

μ

i ξ
μ+1
j + ξ

μ+1
i ξ

μ

j

)
+

1

N

p∑
μ=c+1

ξ
μ

i ξ
μ

j if i �= j

= J0 if i = j, (3)

in which each value of ν(0 � ν � 1) defines a model so that when ν = 1 we get Little’s model
with a Hebbian rule and when ν = 0 we have the purely symmetric sequential model. The first
and second summations are responsible for the signal in the local field while the last summation
is responsible for the noise and we comment on that term in section 5. The self-interaction
J0 is a real non-random variable which can take any positive or negative value enhancing or
inhibiting, respectively, the local field in the form of a pattern-independent contribution J0σ

t
i .

It either tends to enforce the actual state of unit i, if J0 is positive, or to switch the state if J0

is negative.
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3. The dynamic generating functional approach

The dynamical evolution of the system is described by the moment generating functional [11]

Z(ψ) =
〈

exp

(
−i

∑
i

t∑
s=0

ψs
i σ

s
i

)〉

=
∑

σ0,...,σt

Prob(σ0, . . . , σt ) exp

(
−i

∑
i

t∑
s=0

ψs
i σ

s
i

)
, (4)

where ψs = (
ψs

1 , . . . , ψ
s
N

)
is a set of auxiliary variables that serve to generate averages of

moments of the states and the brackets denote an average over all possible paths of states with
probability

Prob(σ0, . . . , σt ) = p(σ0)

t−1∏
s=0

∏
i

exp
(
βσ s+1

i hs
i

)
2 cosh

(
βhs

i

) (5)

that follows from (2). Assuming that for N → ∞ only the statistical properties of the stored
patterns will influence the macroscopic behaviour of the system, one obtains the relevant
quantities which are the overlap mt

μ of O(1) with any one of the condensed patterns ξμ, the
two-time correlation function Ctl and the response function Gtl , given by

mt
μ = 1

N

∑
i

ξ
μ

i

〈
σ t

i

〉 = lim
ψ→0

i

N

∑
i

ξ
μ

i

∂Z(ψ)

∂ψt
i

, (6)

Ctl = 1

N

∑
i

〈
σ t

i σ
l
i

〉 = − lim
ψ→0

1

N

∑
i

∂2Z(ψ)

∂ψl
i ψ

t
i

(7)

and

Gtl = 1

N

∑
i

∂
〈
σ t

i

〉
∂θ l

i

= i lim
ψ→0

1

N

∑
i

∂2Z(ψ)

∂θ l
i ψ

t
i

(l < t), (8)

where the bar denotes the configurational average with the non-condensed patterns {ξρ}
(ρ = c + 1, . . . , p) and the restriction l < t is due to causality. The two-consecutive-time
correlation function has a particular meaning since qt = Ct,t−1 gives the fraction of flipping
spins between two consecutive times as (1 − qt )/2.

Following the now standard procedure, in which the disorder average is done before the
sum over the neuron states, one obtains exactly, in the large-N limit, the generating functional
[11, 32]

Z(ψ) =
〈 ∑

σ0,...,σt

p(σ0) exp

(
−i

∑
i

t∑
s=0

ψs
i σ

s
i

)

×
∏

i

∏
s<t

[ ∫
dhs

i δ
(
hs

i − hs
eff

)
w

(
σ s+1

i

∣∣hs
i

)]〉
{φs

i }
(9)

in which p(σ0) = ∏
i p

(
σ 0

i

)
is the probability of the initial microscopic configuration while

〈· · ·〉{φt
i } denotes an average over a set of temporarily correlated Gaussian random variables{

φt
i

}
for unit i, with zero-average and a correlation matrix given below. The random variables
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on different units turn out to be uncorrelated and one is left with a single-site effective theory
in which a neuron evolves in time according to the transition probability

w
(
σ t+1

∣∣ht
eff

) = 1
2

[
1 + σ t+1 tanh

(
βht

eff

)]
(10)

with an effective local field given by

ht
eff =

∑
μ,ρ�c

ξμAμρm
t
ρ + J0σ

t + α
∑
s<t

Rtsσ
s +

√
αφt , (11)

where

Aμρ = νδμ,ρ + (1 − ν)(δμ,ρ+1 + δμ,ρ−1), (12)

and we assume that θ t = 0. The two non-trivial contributions to the effective local field for
α > 0 come from a retarded self-interaction involving the matrix elements

Rts = [G(I − G)−1]ts (13)

and the zero-average temporarily correlated Gaussian noise φt with variance

Sts = 〈φtφs〉{φt } = [(I − G)−1C(I − G†)−1]ts . (14)

Here, C and G are matrices with elements {Cts} and {Gts}, respectively. Both contributions
account for memory effects in the network that come from the noise in the original local field
due to the macroscopically large number of non-condensed patterns.

The dynamics of each of the macroscopic quantities, given by (6)–(8), is obtained from
the statistics of the effective single neuron process through the average

〈f (σ)〉∗ =
∫

dφP(φ)
∑

σ

P(σ|φ)f (σ), (15)

where σ = {σ t } and φ = {φt } are now single-site vectors that follow a path in discrete times,
and

P(σ|φ) = p(σ 0)
∏
s<t

w
(
σ s+1|hs

eff

)
(16)

is the single-spin path probability given the Gaussian noise φ in the effective field, with a
distribution

P(φ) = 1√
(2π)t (det S)

exp

(
−1

2
φ · S−1φ

)
. (17)

In order to obtain the full dynamic description of the transients for α > 0, we make use of the
EO procedure in which the effective single-site dynamics given by (10)–(17) is simulated by
a Monte Carlo method. There are no finite-size effects, but a large number NT of stochastic
trajectories have to be generated for the single-site process in order to keep the numerical error
small. The macroscopic parameters can then be obtained from the average

〈f (σ)〉∗ = 1

NT

NT∑
a=1

f (σa), (18)

where σa denotes the spin along the path a. The number of stochastic trajectories NT should
not be confused with the number of neurons N, which goes to infinity. The specific algorithm
that implements the EO method is described in the literature [32, 33].

For a finite loading of patterns (α = 0) we can obtain analytically recursion relations for
the condensed overlaps and expressions for the correlation coefficients defined below. In this
case the effective local field (11) assumes the form

ht
eff =

∑
μ,ρ�c

ξμAμρm
t
ρ + J0σ

t , (19)
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so that P(σ|φ) becomes φ independent and the integral over φ in (15) equals unity. Now ht
eff

still depends on the microscopic state of the system at time step t and in order to calculate the
sum over the paths in the average 〈σ t 〉∗ we follow the procedure introduced in [25]. Assuming
an initial distribution p(σ 0) = 1

2

[
1 + σ 0ξλm0

λ

]
, which corresponds to an initial vector overlap

with components m0
μ = δμλm

0
λ (μ = 1, . . . , c), the following system of recurrence relations

can be derived:

〈σ t+1〉∗ = 1
2 (1 + 〈σ t 〉∗) tanh β(ξ ·Amt + J0) + 1

2 (1 − 〈σ t 〉∗) tanh β(ξ · Amt − J0), (20)

mt
μ = 〈ξμ〈σ t 〉∗〉ξ, (21)

with ξ · Amt = ∑
μ,ρ�c ξμAμρm

t
ρ and 〈σ 0〉∗ = ∑

σ 0 p(σ 0)σ 0 = ξλm0
λ. At a time step t, one

has to update all the 2c possible values of the single-site average 〈σ t 〉∗ by means of (20), each
one related to a given realization of ξ. This procedure allows us to calculate the overlaps at
the same time step through (21). For ν = 1 and c = 1, (20) and (21) can be written as a single
recurrence relation for the overlap with one condensed pattern and one recovers the results for
Little’s model [25].

In this work, we are also interested in studying the correlation between the stationary
states of the network generated by different initially stimulated patterns. Defining

{〈
σλ

i

〉}
(i = 1, . . . , N) as the stationary state corresponding to a stimulus in pattern λ, represented by
an initial condition on the overlaps of the form m0

μ = δμλm
0
λ (μ = 1, . . . , c), the normalized

correlation coefficient between two stationary states is defined by [4]

Cλρ =
∑N

i=1

〈
σλ

i

〉〈
σ

ρ

i

〉
∑N

i=1

〈
σλ

i

〉2 . (22)

We may use the self-average property to write (22) in the large-N limit, for α = 0, as

Cλρ = 〈〈σλ〉∗〈σρ〉∗〉ξ

〈〈σλ〉2∗〉ξ

, (23)

where 〈σλ〉∗ and 〈σρ〉∗ are determined by the fixed-point solutions to (20) and (21). When
α �= 0 the summations over sites in (22) can no longer be replaced by the averages over
patterns in (23), but one may use the similarity of the overlap vector with that at α = 0 as a
guide to decide if one is in the presence of a correlated state or not. In this model, the structure
of the stationary overlap vector is the same when different initially stimulated patterns are
considered. Thus the correlation coefficient Cλρ depends only on the distance d = |λ − ρ|
between the patterns in the sequence. The correlated stationary states one is interested in
a visual-memory task are those for which the decreasing correlation coefficients vanish (or
almost vanish) for increasing d, indicating a clear selectivity with respect to the patterns in the
sequence.

4. Results

We focus mainly on phases of retrieval, cyclic and correlated fixed-point states. All the
explicit results shown in this section were obtained assuming an initial overlap m0

μ = m0
1δμ1

(μ = 1, . . . , c), with m0
1 = 0.4. The reason for this choice in place of the more popular

m0
1 = 1 which favours the retrieval phase is to be within the basin of attraction of the other

phases of interest for convenient values of J0.
We consider in this work c = 10 condensed patterns in all the cases studied, which is

suitable due to the following. First, an interesting sequence for associative-memory tasks
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 0.2

 0.6

1

0  0.2  0.4  0.6  0.8 1
ν

J0

F1

F2

R

E

S

Figure 1. Phase diagram of stationary states for c = 10 condensed patterns, α = 0 = T and initial
overlap m0

μ = 0.4δμ1 (μ = 1, . . . , c). R is a retrieval phase, S is a phase of symmetric-like states,
E is a phase of period-two cycles, the grey area is a phase of correlated fixed-point states, F1 and
F2 are phases of frozen-in fixed-point and period-two cyclic states, respectively.

should not be too short. Second, we expect that already for a value of c of this size the
phase diagrams should only exhibit small quantitative differences in the phase boundaries
for different values of c, guided by the results for the feed-forward network [30]. Third, we
are interested in fixed-point correlated states [3, 4], characterized by well-defined correlation
coefficients Cd that decrease down to a vanishingly small value for the largest d which should
not be too small.

Although only few results can be derived analytically (see below) due to the complexity of
the problem, all the features of the phase diagrams can be obtained numerically for α = 0. We
show first the results in that case for the stationary behaviour obtained by means of the iteration
of (20) and (21) until a stationary overlap vector m is reached. The (ν, J0) phase diagram of
stationary states in the absence of noise (α = 0 = T ) is shown in figure 1. Given a value of
ν (which defines a model) and the initial overlap with the condensed patterns that specifies
the basins of attraction of the phases of interest, the size and the sign of the self-interaction J0

yield the various stationary phases as indicated. The variety of the phases is also investigated
studying the behaviour of the system as a function of the model parameter ν, for a given J0.

For large values of |J0|, there is a phase F1 of frozen-in fixed-points for positive J0, with
an overlap mμ = 0.4δμ1 (μ = 1, . . . , c) that stays the same as the initial overlap for all times,
and there is a phase F2 of frozen-in cycles for negative J0, with an overlap mt

μ = (−1)t0.4δμ1

(μ = 1, . . . , c) that keeps switching between the initial overlap and its opposite. The phase
boundaries of F1 and F2 can be derived analytically from (20) and (21) in the T → 0
limit iterating the condensed overlaps at consecutive times. Writing the initial overlap as
m0

μ = m0
λδμλ (μ = 1, . . . , c), for a general m0

λ

(
0 � m0

λ � 1
)
, this yields first an expression for

m1
λ at the first time step in terms of J0, ν and m0

λ. The conditions that m1
λ = m0

λ or m1
λ = −m0

λ

(the case for F1 or F2, respectively) are

J0 > m0
λ(2 − ν), phase F1 (24)

J0 < m0
λ(ν − 2), phase F2, (25)

which are independent of c. These conditions also lead to m1
λ±n = 0 (n = 1, . . . , c − 1)

which ensures that the network state does not switch from one condensed pattern to another.

7



J. Phys. A: Math. Theor. 42 (2009) 385001 F L Metz and W K Theumann

 0.1

 0.3

 0.5

 0.7

0  10  20  30  40  50

t

m
t

1

(a) J0 = −0.1.

 0.3

 0.9

0  10  20  30  40  50

t

m
t

1

(b) J0 = −0.3.

Figure 2. Evolution of a single overlap (the other components behave in a similar way) in phase
E for ν = 0.3, initial overlap m0

μ = 0.4δμ1 and α = 0 = T in (a) the upper part of the phase with
J0 = −0.1 and in (b) the lower part with J0 = −0.3.

The same relation m1
μ = ±m0

λδμλ (μ = 1, . . . , c) holds from any time step to the next one
giving rise to the phase boundaries of the frozen-in states. In phases F1 and F2 the system is
not useful for information processing but, as will be seen below, the frozen-in states become
destabilized in the presence of synaptic noise (T > 0) and, eventually, lead to dynamically
useful fixed-point or oscillating states.

In figure 1, there is a phase R of retrieval fixed-point states for large ν that reflects the
dominance of the Hebbian synapses, with stationary overlaps mμ = δμ1 (μ = 1, . . . , c). The
upper and lower phase boundaries of R end at J0 = ±0.4 for ν = 1 which has previously
been obtained analytically for Little’s model in the absence of noise [22, 25]. A phase S
of symmetric or symmetric-like states of equal or similar overlap components, respectively,
appears for not too large J0 � 0. This phase exhibits a succession of multiple discontinuous
transitions of the overlap vector m for intermediate values of ν that will be shown below
in connection with the phase of correlated states, which is the grey area in figure 1. It is
appropriate to note here that the latter is a phase that arises from the competition between
sequential and Hebbian processing and it is not present in the Little’s model with pure Hebbian
synapses. There is also a phase E of period-two cycles with mt+2

μ = mt
μ for μ = 1, . . . , c

mostly for negative J0, as shown in figure 2 for one of the overlap components. Phase E
exhibits a similar behaviour as that in phase S with multiple transitions but now to a variety of
period-two cycles, in place of fixed-point states.

In figure 2, we show the period-two cyclic behaviour within phase E for a single
component; the other components behave in a similar way, for a typical ν = 0.3 and two
negative values of J0 within that phase, as indicated. In the upper part of the phase the
stationary oscillation is between positive overlaps and in the lower part the oscillation is
between ±m.

The fixed-point solutions for one of the overlap components at α = 0 = T for a typical
J0 = 0.2 in phase S and the whole range of ν are shown in figure 3(a). There are a finite number
of bifurcations at specific values of ν, in both the white and grey regions in that phase ending at
the retrieval phase with m1 = 1. All the other overlap components follow a similar behaviour
with transitions not necessarily of the same size but at the same values of ν. We have studied

8
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(a) J0 = 0.2.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5
d

Cd

0.4

0.25

0.0

0.1

(b) ν = 0.6.

Figure 3. Multiple transitions of one of the overlap components within the whole range of ν (a)
and correlation coefficients Cd defined in the text for various values of J0 (b). Both figures were
generated for c = 10, α = 0 = T and initial overlap m0

μ = 0.4δμ1 (μ = 1, . . . , c). (a) J0 = 0.2
and (b) ν = 0.6.

 0.2

 0.6

 1

 0  0.2  0.4  0.6  0.8  1
ν

J0
D

P

R

D

E1

E2

S

Figure 4. Phase diagram of stationary states for c = 10, α = 0, T = 0.2 and initial overlap
m0

μ = 0.4δμ1 (μ = 1, . . . , c). R is a retrieval phase, S is a phase of symmetric-like states, P is a
paramagnetic phase, the regions D are phases of correlated fixed-point states and E1 and E2 are
phases of cyclic states.

the fixed-point solutions in both symmetric and correlated states calculating the correlation
coefficients Cd as a function of the distance d, as shown in figure 3(b) for a fixed ν = 0.6 and
different values of J0, as indicated. Either Cd decreases to a finite value, which is typical of
symmetric-like fixed-points, or Cd decreases to zero, which is a characteristic of correlated
states. The numerical criterion chosen for the latter employed in the construction of the grey
region of figure 1 is that C5 < 0.02 for the maximum distance d = 5. The non-monotonic
behaviour of Cd with J0 reflects the re-entrance region to the phase of correlated states in
figure 1.

In order to illustrate the role of synaptic noise on the behaviour of the network, we show
in figure 4 the (ν, J0) phase diagram of stationary states for α = 0 and T = 0.2. For ν ≈ 1,
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Figure 5. Phase diagram of stationary states for c = 10, α = 0, J0 = −0.2 and initial overlap
m0

μ = 0.4δμ1 (μ = 1, . . . , c). The phases are those of figure 4.

the model has a similar behaviour to that of Little’s model [22, 25]. There is a retrieval phase
R with m 
 (m1, 0, . . . , 0) and m1 assuming values in the range 0.9 � m1 � 1, depending
on the parameters ν and J0. The frozen-in cyclic states in the phase F2 at T = 0 = α become
destabilized by synaptic noise for all ν. For larger ν they go into a paramagnetic phase with
m = 0 and for smaller ν they become period-two cycles with overlaps that evolved from
the initial value. The cyclic states in region E1 are reminiscent of those in the feed-forward
network [30], with each overlap component oscillating between a larger and a smaller positive
value. In fact, for α = 0 = J0 we recover the results of [30], since in this case the equations for
the order parameters are precisely the same in the layered and in the recurrent networks. The
overlap components in phase E2 are mt

μ = (−1)tmμ, each one exhibiting usually a different
amplitude mμ. The frozen-in states in phase F1 for α = 0 = T are destabilized by synaptic
noise and become symmetric or symmetric-like states in phase S. This is now a phase that ends
at two phases of correlated fixed-point solutions in the two disjoint regions D, that differ in
the rate at which Cd goes to zero. In the lower region D, we have Cd ≈ 0 for d = 3, whereas
in the upper region D,Cd ≈ 0 for d = 5. As can be seen from figure 4, the range of values of
ν where the network evolves to correlated fixed-point states can be enhanced by an increase
of J0.

To illustrate the robustness of the different phases with respect to synaptic noise, we show
in figure 5 the (ν, T ) phase diagram for α = 0 and a small J0 = −0.2. Although the oscillation
amplitudes of the overlap components in phases E1 and E2 decrease with increasing T, the
cyclic solutions are stable even for a relatively large synaptic noise.

We consider now the effects of stochastic noise due to a macroscopic number of patterns,
p = αN , employing the EO procedure [32]. Since the construction of a phase diagram using
this method is a prohibitive task due to the slow dynamics for finite α [25], we concentrate on
the stability of some typical states. First we study the cyclic states favoured by dominating
sequential synapses, that is for small ν. In figures 6(a) and 6(b), we illustrate, respectively, the
dynamics of mt

1 and the stability to stochastic noise of a stationary overlap component (the other
components behave in a similar way), both for a state in phase E1, when J0 = −0.02, ν = 0.1
and T = 0.2. Figure 6(a) shows, for α = 0.01, that mt

1 keeps oscillating between the upper
and lower values at consecutive time steps without any significant variation in the amplitude
with the asymptotic state being reached for t ∼ 40 time steps, suggesting that the cyclic states
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Figure 6. Dynamics of one overlap component mt
1 in the cyclic phase E1 for α = 0.01 (a), and

stationary overlap for increasing stochastic noise α with transition to the symmetric-like phase S
at α ≈ 0.06 (b), both for c = 10, T = 0.2, J0 = −0.02, ν = 0.1 and initial overlap m0

μ = 0.4δμ1

(μ = 1, . . . , c). These results were generated by the EO procedure with NT = 5×105 trajectories.
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Figure 7. Dynamics of mt
1 in the cyclic phase E2 for c = 10, J0 = −0.3, ν = 0.1, T = 0.2,

initial overlap m0
μ = 0.4δμ1 (μ = 1, . . . , c) and two levels of stochastic noise: α = 0.5 (crosses)

and α = 0.7 (circles). These results were generated by the EO procedure with NT = 5 × 105

trajectories.

in phase E1 are stationary states of the network dynamics for small values of α. The cycles
decrease in amplitude with increasing α within that phase and change into symmetric-like
states for larger α, as shown in figure 6(b).

The cyclic states in phase E2 turn out to be stable for higher stochastic noise as shown in
figure 7 by the dynamics of mt

1 for J0 = −0.3, ν = 0.1, T = 0.2 and two values of α. Indeed,
for α = 0.5 the overlap component keeps oscillating with no change in the amplitude after a
transient period, indicating stability to stochastic noise, whereas for α = 0.7 the amplitude
is already decreasing, indicating that the cycles are unstable for that load of patterns. The
reason for the increased robustness to stochastic noise of the cycles in phase E2, in contrast to
those in phase E1, is that the former are deeper in the cyclic region, with a larger negative J0
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Figure 8. Dynamics of mt
1 in the lower phase D of correlated fixed-point states for c = 10, J0 =

−0.25, ν = 0.83, T = 0.005, initial overlap m0
μ = 0.4δμ1 (μ = 1, . . . , c) and two levels of

stochastic noise: α = 0.006 (crosses) and α = 0.01 (circles). These results were generated by the
EO procedure with NT = 5 × 105 trajectories.

for the same initial overlap m0
μ. We comment in the last section on the relative robustness to

stochastic noise of both cyclic phases.
We consider next the stability of correlated fixed-point states in the presence of stochastic

noise which are expected for dominating Hebbian synapses in the presence of sequential
interactions and we resort again to the EO procedure. The dynamics of mt

1 up to t = 300 time
steps was studied for a state within each region D of figure 4. In figure 8, results in the
lower region D with ν = 0.83, J0 = −0.25 and T = 0.005 are shown in order to extract
mainly the effects of stochastic noise for two values of α. The upper curve, for α = 0.006,
indicates that the correlated fixed-point state is stable with a stationary overlap vector given
by m 
 (0.75, 0.25, 0, . . . , 0, 0.25). This state is already unstable for a somewhat larger
α = 0.01, as suggested by the lower curve, since the overlap mt

1 decreases towards a
value that is quite different from m1 
 0.75. In fact, we obtained an overlap vector given
approximately by m 
 (0.34, 0.30, 0.21, 0.14, 0.09, 0.07, 0.09, 0.14, 0.20, 0.28), indicating
that the network evolves to a symmetric-like state.

We have also investigated the stability of states in the upper region D and in the retrieval
phase, and found similar results to those in the lower region D, in the first case, and results
reminiscent of those for Little’s model, in the second case, indicating stability for small values
of α.

5. Summary and conclusions

The generating functional approach has been used in this work to study the synchronous
dynamics, the stationary states and the transients of a recurrent neural network model with
synapses generated by the competition between symmetric sequence processing and Hebbian
pattern reconstruction. Either the numerical procedure of Eissfeller and Opper, based on the
GFA, to simulate paths of single-spin states, or a simpler alternative procedure has been used
in this work to obtain results in the presence or the absence of stochastic noise due to the
load of a macroscopic number of patterns. There is a single timescale in the dynamics (the
step of unit size) leading to both fixed-point and cyclic behaviour of period two. The latter
arises from the synchronous updating of all units at every time step and it is enhanced by
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two features: the sequential interactions and the self-interaction of the units. The mean-field
dynamics done here allows us to study the stability of the fixed-point and cyclic states as well
as the transitions between them.

In distinction to Little’s model (the case ν = 1 of purely Hebbian synapses) where the
cycles of period two only appear as frozen-in states in the absence of noise and become
destabilized by synaptic or stochastic noise, there appear now in the case where 0 � ν < 1
also stable dynamic cycles of period two, either with or even without noise. These are cycles
that evolve from the initial overlap to a stationary state, and they appear in a large region of
the phase diagram.

The retrieval behaviour and the fixed-point correlated states are also enhanced by the
presence of a self-interaction and in this work we investigated the changes in the phase
diagrams due to that interaction. Phase diagrams of stationary states were obtained in this
work and it was shown that fixed-point correlated states are clearly separated from both phases
of cyclic states already for a small but finite synaptic noise, independently of the size (and
even in the absence) of a self-interaction. This suggests, within the limited conclusions that
can be drawn from an attractor neural network model, that there should be no interference of
the oscillating states produced by the synchronous dynamics with the correlated fixed-point
states that are crucial in visual task experiments.

We comment, next, on the last summation in the synaptic interaction given by (3), which
is responsible for the noise term in the local field ht

i . One may consider a more general form
1
N

∑p
μ,ρ>c ξ

μ

i Bμρξ
ρ

j with an interaction matrix of the same form as (12) for the condensed
part,

Bμρ = bδμ,ρ + (1 − b)(δμ,ρ+1 + δμ,ρ−1) (26)

with 0 � b � 1, which could be equal to ν. The case we considered here, for simplicity, is a
Hebbian noise with b = 1. The more general form has been used in the case of the layered
feed-forward network [30] and one may infer from the results of that work the qualitative
changes on the results presented here when b = ν. It turns out that the pure Hebbian case
underestimates slightly the storage capacity of the fixed-point states for large values of ν.
On the other hand, the storage capacity for almost pure cyclic behaviour, with small ν, is
overestimated by a pure Hebbian noise, and this is one of the reasons for the large value of
α for which the cyclic states are still stable in both cyclic phases E1 and E2, as found in
section 4.

Finally, there are a few features of the model which are worth pointing out. First is
that the results obtained with the symmetric interactions Jij in (3) are quite different from
those for Little’s model. One of these results is the presence of fixed-point correlated states;
another is the presence of stable cycles in phases E1 and E2, in distinction to the absence of
cycles in Little’s model with noise. Furthermore, excitatory self-interactions enhance fixed-
point correlated states as shown by the enlarged upper part of the D phase. Also, inhibitory
self-interactions are not only responsible for the enhancement of the fraction of flipping
spins, a feature that is known from Little’s model, but even for the presence of fixed-point
correlated states as demonstrated by the lower part of the D phase. The presence of the
various stationary states shown in this work depends on the relationship between the self-
interaction J0, the initial overlap m0

μ and the value of ν. These quantities shape the basins of
attraction of the simplest stationary states and other states could be considered with alternative
initial states if necessary. An interesting extension of this work would be to consider random
self-interactions.
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